Placing Recent Droughts in a Long-Term Context with Tree-Ring Reconstructions for the Russian River Valley

Connie Woodhouse and Dan Griffin
Department of Geography and Regional Development, University of Arizona

Santa Rosa Workshop on Water Conditions and Drought Preparedness
Santa Rosa CA, Oct. 9, 2008

This work was funded in part by the California Department of Water Resources.
Overview

• Why consider the past when planning for the future?
• How do tree rings work?
• What do tree rings tell us about past droughts in the Russian River Valley?
• How is this information being used in water resource planning?
Why consider the past when planning for the future?
Records from rain gages extend back 125 years, at best.

These records document extreme dry year and persistent drought.

How representative are these records and the drought events they contain?

Annual precipitation from 3 stations, 1889-2006.
Records of precipitation and streamflow can be extended back in time using tree-ring data.
Extended record can provide a long-term context for assessing droughts in the modern climate records.
How do tree rings work?
Variations in annual ring widths reflect the conditions that influence tree growth.

Climate is often the primary influence on growth.

Because of this, ring widths can be used as a proxy for past climate.
What trees are the best recorders of precipitation, streamflow and drought?

Moisture-sensitive tree species growing on open, well drained sites reflect moisture variability in their ring widths and are targeted for collection.
Moisture-stressed trees closely track variations in precipitation.

Ring widths from a single tree near Bear Valley are plotted with water year precipitation in the Russian River Valley. ($r = 0.78$).
Collecting tree ring data and compiling site tree-ring chronologies

An increment borer is used to sample cores from about 20 trees at a site.

Cores mounted and sanded, then dated, measured, and averaged into site tree-ring chronologies.
What do tree rings tell us about past droughts in the Russian River Valley?
Vegetation Zonation:
Blue oak woodland, chaparral, mixed conifers

Blue oak (Quercus douglasii)

- California rock oak
- Douglas oak
- Foothill oak*
- Iron oak
- Jack Oak
- Mountain white oak
- Post oak
- Western white oak

Sequoia National Park
Blue Oak
Chronology
Network

Blue Oak
(Quercus douglasii)
Regional Climate Sensitivity

Precipitation

a. Precipitation (mm)

b. Correlation

c. Ring-Width Index

d. Observed vs. Reconstructed Precipitation

$$R^2 = 0.82$$
Reconstructed Rainfall 1582-2004
Russian River Valley

Precipitation (mm)

Water Year

Bear Valley
Reconstructed Running Means

5-Year

7-Year

10-Year
n-year running mean drought events

<table>
<thead>
<tr>
<th>Rank</th>
<th>1-Year Drought</th>
<th>5-Year Drought</th>
<th>7-Year Drought</th>
<th>10-Year Drought</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year</td>
<td>%</td>
<td>Year</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>1976</td>
<td>34</td>
<td>1991</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>1829</td>
<td>39</td>
<td>1844</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>1733</td>
<td>40</td>
<td>1614</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>1864</td>
<td>43</td>
<td>1655</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>1898</td>
<td>48</td>
<td>1933</td>
<td>78</td>
</tr>
</tbody>
</table>
Here, drought is defined as one or more consecutive years below the long-term mean.

The 20th century represents a subset of the droughts in the full reconstruction period.
How is this information being used in water resource planning?

- Worst case scenarios for drought planning:
- Water supply system resilience, using tree-ring data as input in water supply system models
- Blending information about the past and with climate projections for the future for robust planning
Will the climate of the past 100 years be an adequate baseline for future planning?

Probably not, but extended records of past climatic variability from paleoclimatic data, such as tree rings, can provide additional information for understanding the range of conditions that may be expected under natural variability.